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ABSTRACT  
One common encounter in landslide susceptibility prediction is the lack of landslide samples to train the models. The 
main objective of this study is to investigate the impact of imbalanced data on landslide susceptibility prediction and 
compare the performance of models using imbalanced (original) and balanced data. Terrain information were obtained 
from samples of land with landslides and without landslides. Using exploratory data analysis, the characteristics of the 
variables in landslide and non-landslide cells in relation to their surrounding cells were identified and new independent 
variables were created to augment the existing dataset. Statistical learning method like logistic regression and recursive 
partitioning approaches including Decision Tree, Bootstrap Forest and Boosted Tree were used for landslide 
classification. Then, synthetic minority oversampling technique (SMOTE) was applied to expand the quantity of 
landslide samples and the same models were ran again. Results indicated that across all models, the usage of balanced 
data and increase in minority samples have led to improved outcomes, with true positive rates increasing from around 
50% or less, to over 80% in all models. Recursive partitioning approaches like Bootstrap Forest and Boosted Tree 
generally performed better compared to logistic regression, giving higher true positive rates and a balance of 
performance among other evaluation metrics. 

INTRODUCTION  
According to the World Health Organisation (2018), landslides occur more frequently than any other geological event, 
and can happen anywhere in the world. Between 1998 and 2017, landslides caused 18,000 fatalities, and affected an 
estimated 4.8 million people worldwide. In Italy, Austria, Switzerland and France, the mean annual costs of landslides 
were estimated between USA 1 to 5 billion for each country (Strumpf & Kerle, 2011). With growing occurrences, 
landslide identification plays a significant role in landslide risk assessment and management (Wang et al., 2019). 
 
The use of statistically based models and machine learning techniques to understand landslide susceptibility is not an 
uncommon practice. A meta-analysis conducted by Korup and Stolle (2014) across 674 scientific papers published, 
found that most machine learning techniques achieved overall success rates of 75 to 95 percent and added that logistic 
regression was the most commonly adopted approach (33 percent). This was followed by Artificial Neural Networks 
(31 percent) and Frequency Ration Models (18 percent).  

Despite preference and high utility for certain approaches, there is no agreed upon best method for empirical 
susceptibility modelling (Goetz et al., 2015). A point of interest that came up in recent literature, however, was the issue 
of class imbalance in landslide susceptibility data. Studies have shown that a balanced dataset improves overall 
classification performance compared to an imbalanced dataset in several classifier algorithms. While this does not 
imply classifiers cannot learn from imbalanced data, the application of sampling methods does indeed aid in improved 
classifier accuracy for most imbalanced datasets (Haibo & Garcia, 2009). Specific to landslide susceptibility, in a study 
conducted by Stumpf and Kerle (2011), test runs using Random Forests with naturally imbalanced training sets resulted 
in serious underestimation of the landslide class. Such biases were undesirable as an over or underestimation of 
affected areas would lead to over or underestimation of the associated risks. However, treating imbalanced samples is 
not commonly practiced in the field.  

In our study, we will be applying synthetic minority oversampling technique (SMOTE) to expand the quantity of landslide 
samples and doing comparisons of the results pre- and post-SMOTE. Proposed by Chawla in 2022, SMOTE is an 
oversampling technique that performs k nearest neighbours on the minority class and interpolates between them to 
generate new data observations. This method has its advantages over random undersampling, which may throw out 
potentially useful data; and random oversampling, which may be susceptible to overfitting since it simply replicates 
existing examples in the minority class (Singh & Sharma, 2019). SMOTE is also generalised to handle datasets with 
both continuous and nominal features, which will be appropriate for the features available in our study. Several other 
landslide susceptibility studies (Wang et al., 2018 and Gao et al., 2020) have also used SMOTE method to augment 
the minority class samples and reported favourable prediction results.  

DATA 
This project will utilise the dataset obtained from the Landslide Prevention and Innovation Challenge on Zindi Africa 
Platform that is provided by the Hong Kong University of Science and Technology (2022). The dataset contains 
information on terrain information taken from plots of land samples. Each sample is composed of data from 25 cells, 
covering an area of 625 m2. Each cell represents an area of 5 x 5 m2. For cases with a landslide, the middle cell, cell 
13, is the location of the landslide. Cell orientation and independent variables available in the dataset are presented in 
the figure and table below. 
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Figure 1. Dataset Cell ID allocation  

 
Table 1. Independent variables for landslide identification 

 

DATA PREPARATION 

Heatmaps of Predictors  

Prior to data preparation, heatmaps of the continuous predictions for the landslide and non-landslide cases were 
developed to better visualize and understand the average values of the factors across the 25 cells.  

Comparing Figures 2 and 3, the heatmaps for selected factors differed for landslide vis-à-vis non-landslide cases. In 
landslide cases for the elevation factor, the top two rows had higher values of up to 246m compared to the bottom two 
rows, whereas for the non-landslide cases, the bottom two rows of cells had higher elevation of up to 218m. This pattern 
was repeated for planform and profile curvature – the landslide cases showed a distinct pattern where the first two rows 
of cells had the highest values vs the bottom two rows which had the lowest values. Contrarily, the non-landslide cases 
had the highest values to the left of the plot of land, and the lowest values to the right. The range of values for these 
three factors were also wider for landslide cases compared to non-landslide cases. 

For TWI, the lowest value of 4 was at cell 13 for landslide cases, while the lowest TWI values for non-landslide cases 
were more dispersed and higher in magnitude, at 50.10, and was located at cell 5. Comparing both figures for the slope 
factor, cells 8, 9, 13, and 14 had the highest values of up to 36 for landslide cases, while it was cells 17 and 18 for the 
non-landslide cases, with the highest values of only up to 26.9. Similarly for the length slope factor, the same cells had 
the highest values for the landslide cases of up to 10, while the non-landslide cases had the highest value in cell 23, 
and only up to 7.4. 

For slope and length slope factor, the landslides cases displayed a pattern where higher values were concentrated in 
the middle cell and its immediate neighbours, whereas the dispersion of values in non-landslide cases were more 
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random. 

Figure 2. Heatmaps of continuous predictors (Landslide) 

 

 

 
 

Figure 3. Heatmaps of continuous predictors (Non-Landslide) 
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Data Preparation 

As cell 13 is the location of the landslide, data for cell 13 was retained for all factors. In line with the interpretation of 
the heat maps, new features were also created to capture the differences and patterns between cell 13 and its 
neighbours. The data preparation process is summarized in Figure 4 below. 
 
Figure 4. Data Preparation Process 
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ANALYTICAL APPROACH 
There is no consensus on an optimal machine learning (ML) algorithm as the performance and predictive ability of ML 
models rely on many factors such as the fundamental quality of the algorithms and the quality of the landslide inventory. 
As such, literature suggests choosing the best-performing ML model after building several (Liu et al., 2021, Merghadi 
et al., 2020). Since landslide prediction is a classification problem with the binary outcome of presence/absence of a 
landslide, and training data has been provided, we will build 4 models using supervised ML classification algorithms. 
The 4 methods are summarised in the table below (Merghadi et al., 2020, Wang et al., 2020, Hurley, 2012). 
 
Table 2. Summary of ML methods Utlised  

Models Goal of ML Method Strengths Limitations 

Logistic 
Regression  

Predicts the probability of 
the occurrence of an event. 

Has been shown to have 
high accuracy in predicting 
landslides. 

Assumptions to be met: 

- Little or no multicollinearity 
between factors 

- Dependent variable has to 
be in binary form 

- Large sample size 

Decision 
Tree  

Splits the data based on 
independent factors in the 
input dataset and 
generates decision nodes 
inferring a predictor value. 

Performance may 
sometimes be superior when 
compared to linear models 
such as logistic regression. 

It may return a biased solution 
if one class label dominates 
the dataset, thus it is 
necessary to use a balanced 
dataset. 

Boosted 
Tree 

A sequence of weak 
learners (such as decision 
tree) is fitted to weighted 
versions of the training 
data. 

Combines the performance 
of a number of weak 
classifiers to produce a 
powerful “committee”, so it is 
regarded as a strong 
classifier. 

It may overfit the data and thus 
predictions on new data may 
not be accurate.  

Bootstrap 
Forest 

Utilises multiple decision 
tree type classification 
models to determine an 
optimal model. 

The resulting model is 
usually more powerful than 
the initial decision tree, and 
reduces overfitting and helps 
improve accuracy. 

It often produces the best 
results when there is tuning of 
hyper-parameters, such as the 
number of trees to be 
combined, or the maximum 
number of features considered 
at each split. 

ANALYSIS PROCESS AND RESULTS 
Sampling for data validation – Original and SMOTE dataset 

After preparation of the predictors, the sample was split into 3 sub-groups for training (40%), validation (30%) and 
testing (30%). To address the main objective of the study, a separate sample was also prepared using SMOTE 
techniques to address the issues of class imbalance, using the same split in proportion. Consequently, 5432 additional 
rows of observations with label of value 1, i.e., landslide observations were generated. The figures below show the 
parameters used for the sampling for both Original and SMOTE dataset. 
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Figure 5. Sampling parameters for Original Sample (left) and SMOTE Sample (right) 

   

Logistic Regression Approach  

While logistic regression is not limited by several key assumptions of linear regression and general linear models that 
are based on ordinary least squares algorithms – linearity, normality, homoscedasticity, and measurement level, it still 
shares some assumptions with linear regression. One main assumptions of logistic regression is for there to be little or 
no multicollinearity among the independent variables (Schreiber-Gregory & Bader, 2018). Hence, before performing 
logistic regression, we first checked for multicollinearity among the continuous independent variables. 

Multivariate Analysis of variables 

Among the 19 independent variables, two pairs were strongly correlated with correlation values above 0.8. Hence, we 
remove one variable from each pair, specifically middle_second_layer_diff_slope and middle_second_layer_diff_ls and 
retained 17 variables for logistic regression. 

Figure 6. Pairwise Correlations sorted in descending order of Correlation (Top 5) 

 
Logistic Regression – Original sample 

For logistic regression using the original data, the Whole Model Test shows p-value < 0.0001, lower than significance 
level of 0.05. Hence, we can reject the null hypothesis and conclude that the logistic model is useful to explain the label 
(landslide or no landslide). 

Figure 7. Whole Model Test for Logistic Regression – Original Sample 

 
For the Lack of Fit (Goodness of Fit) test, Prob>Chisq is 1 and we do not reject the null hypothesis at significance level 
of 0.05. This supports the conclusion that the model is adequate and there is little to be gained by introducing additional 
variables. 
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Figure 8. Lack of Fit Test for Logistic Regression – Original Sample 

 
Both the Effect Likelihood Ratio Tests and Parameter Estimates show the same 12 independent variables as significant 
given that Prob>ChiSq of these 12 variables are less than significance level of 0.05. Five variables, including the middle 
cell for length-slope factor and the newly-created variables for planform curvature and profile curvature were found to 
be not significant. 

Among the significant variables, the middle cell (i.e., cell 13) for step duration orographic intensification factor (sdoif), 
planform curvature (placurv) and profile curvature (procurv) were the strongest indicators. Specifically, if a specific plot 
of land cell had higher values of sdoif or procurv; or lower value of placurv, it had a higher landslide susceptibility. 

Figure 9. Parameter Estimates (left) and Effect Likelihood Ratio Tests (right) for Logistic Regression – Original 
Sample 

  
Looking at results on the test dataset, a low true positive rate of 44%, and a misclassification rate of approximately 20% 
was observed. 

Figure 10. Summary results for Logistic Regression – Original Sample 
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Logistic Regression – SMOTE sample 

Performing logistic regression on the SMOTE-treated data, the Whole Model Test shows p-value < 0.0001. Hence, we 
can reject the null hypothesis at significance level of 0.05 and conclude that this logistic model is useful to explain the 
label (landslide or no landslide). 

Figure 11. Whole Model Test for Logistic Regression – SMOTE Sample 

  
Lack of Fit test similarly shows Prob>Chisq less than significance level of 0.05. Hence, we can conclude that the model 
is adequate and there is little to be gained by introducing additional variables. 

Figure 12. Lack of Fit Test for Logistic Regression – SMOTE Sample 

 
Compared with the original sample with 12 significant independent variables, logistic regression on the SMOTE sample 
has 13 significant independent variables as shown by the Parameter Estimates and Effect Likelihood Ration Tests. 
Four variables, including the middle cell for aspect and most of the newly-created variables for planform curvature and 
profile curvature were found to be not significant. 

The strongest indicators for this model were similarly the middle cell for sdoif, placurv and procurv. Higher values of 
sdoif or procurv; or lower value of placurv, indicated a higher likelihood of the land cell having landslide. 

Figure 13. Parameter Estimates (left) and Effect Likelihood Ratio Tests (right) for Logistic Regression – SMOTE 
Sample 

    
True positive rate for the test dataset also improved significantly from 44% to 80%. The misclassification rate, however, 
increased slightly to 22%.  
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Figure 14. Summary results for Logistic Regression – SMOTE Sample 

 

 

Recursive Partitioning Approaches  

As prediction techniques under this approach are nonparametric, these methods do not rely on any assumption about 
the type of dependence of the dependent variable on the predictors (Landau & Barthel, 2010). Therefore, all 19 
independent variables were included in the analysis for all six models. To ensure reproducibility of the data, a seed of 
‘1234’ was set for both the Bootstrap Forest and Boosted Tree analyses.  

Decision Tree – Original sample 

For Decision Tree using the original data, the resultant model with 14 splits yielded 15 terminal leaf nodes with a 
response count ranging from 10 to 274 for landslide observed rows and 25 to 1131 for non-landslide rows. Eight 
variables were identified to have contributed to the model, with the middle cells (i.e., cell 13) for slope, geology and 
elevation being identified as the top 3 indicators for landslide susceptibility. Looking at results on the test dataset, a low 
true positive rate of 36%, and a misclassification rate of approximately 20% was observed. 

Figure 15. Column Contributions for Decision Tree – Original Sample 
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Figure 16. Summary results for Decision Tree – Original Sample 

 
Decision Tree – SMOTE Sample 

Using the SMOTE-treated data, the resultant decision tree model with 13 splits yielded 14 terminal leaf nodes with a 
response count ranging from 3 to 1444 for landslide observed rows and 45 to 878 for non-landslide rows. Six variables 
were identified to have contributed to the model, with the middle cells (i.e., cell 13) for slope, geology and sdoif being 
identified as the top 3 indicators for landslide susceptibility. Looking at results on the test dataset, the true positive rate 
noted significant improvement from 36% to close to 90%. The misclassification rate, however, remained stable at 22%. 

Figure 17. Column Contributions for Decision Tree – SMOTE Sample 

 
Figure 18. Summary results for Decision Tree – SMOTE Sample 
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Bootstrap Forest – Original Sample 

Bootstrap Forest approach was also conducted on the same 19 variables. Figure 19 shows the parameters used for 
the analysis. 

Figure 19. Bootstrap Forest analysis parameters 

  
The resultant model had 62 trees, 19 terms, and 14 terms sampled per split. The true positive rate of the bootstrap 
forest model test set was 51%, an improvement over 36%, which was the test accuracy of the decision tree model. The 
3 most important predictors were the middle cell (i.e., cell 13) for slope, sdoif and elevation. 

Figure 20. Summary results for Bootstrap Forest – Original Sample 

 
Figure 21. Column Contributions for Bootstrap Forest – Original Sample 
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Bootstrap Forest – SMOTE Sample 

Using the SMOTE treated data, Bootstrap Forest approach was also conducted on the same 19 variables using the 
same analysis parameters. The resultant model had 100 trees, 19 terms, and 14 terms sampled per split. The true 
positive rate of the bootstrap forest model was 86%, a significant improvement over 51%, which was the test accuracy 
of the same model using the original data sample. The 3 most important predictors were the middle cell (i.e., cell 13) 
for slope, elevation and sdoif. 

Figure 22. Summary results for Bootstrap Forest – SMOTE Sample 

 
Figure 23. Column Contributions for Bootstrap Forest – SMOTE Sample 

 
  



13 

Boosted Tree – Original Sample 

Lastly, the same 19 variables were also used to implement a boosted tree analysis. Figure 24 shows the parameters 
used for the analysis. 

Figure 24. Boosted tree analysis parameters 

  
The resultant model had 44 layers and 16 splits per tree. The true positive rate of the boosted tree model was 45%, 
and a misclassification rate of 19%. All 19 variables contributed to the model, with the middle cell (i.e., cell 13) for 
geology, slope and elevation identified as the top 3 strongest indicators. 

Figure 25. Summary results for Boosted Tree – Original Sample 

 
Figure 26. Column Contributions for Boosted Tree – Original Sample 
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Boosted Tree – SMOTE Sample 

The Boosted Tree approach was also implemented on the SMOTE treated data using the same variables and analysis 
parameters. The resultant model had 78 layers and 17 splits per tree. The true positive rate of the boosted tree model 
was 86%, and a misclassification rate of 18%. All 19 variables contributed to the model, however, only the top 2 
contributed to more than 10% of the model. The middle cells (i.e., cell 13) for geology, slope and elevation were 
identified as the top 3 indicators. 

Figure 27. Summary results for Boosted Tree – SMOTE Sample 

 
Figure 28. Column Contributions for Boosted Tree – SMOTE Sample 

 

MODEL COMPARISON & EVALUATION 

FACTORS OF IMPORTANCE 
Each model generated a unique set of variables and varies in contribution proportion to the model. It was observed that 
the trend for Logistic Regression was distinctive from the recursive partitioning models. 

For Logistic Regression, the planform curvature, profile curvature and step duration orographic intensification factor 
were the variables with highest magnitude of estimates for log odds. These same variables however, featured much 
lower importance in the recursive partitioning models. Instead, across Decision Tree, Bootstrap Forest and Boosted 
Tree, slope, elevation and geology were noted as important variables. Notably, new variables that were created to 
calculate the differences in parameters between the landslide cell (i.e., cell 13) and its neighbouring cells did not perform 
as well as untreated variables in all models. 
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Table 3. Summary of variable importance on test datasets 

 
Note: The heatmap is visualised per data column. Measure used for Logistic Regression are the Parameter Estimates 
for Log Odds of 1/0. Measure used for Decision Tree, Bootstrap Forest and Boosted Tree are the portion of column 
contributions. 

OVERALL MODEL PERFORMANCE 
Comparing the receiver operating characteristic curve (ROC) of the models, the differences among the models were 
not visibly significant. All models were noted to have good predictive power, with the curve bowing above the diagonal. 
The areas under the curve, an indicator of how good the classifier performs, were also similar across the models. There 
were also no major fluctuations in the curve, indicating that the models are stable. 

Figure 29. ROC Comparison for all models on Original Sample (top row) and SMOTE Sample (bottom row) 
(from left to right: Logistic Regression, Decision Tree, Bootstrap Forest, Boosted Tree) 
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For more detailed comparison among the models, we investigate further into the key performance indicators. The 
table below summarises the key indicators between the training and test datasets.  

Table 4. Summary of Model Performance on Training Datasets 

 
Table 5. Summary of Model Performance on Test Datasets 

 

OVERFITTING ASSESSMENT 
The misclassification rate between training and test datasets was used as an indicator to assess if there are signs of 
overfitting across the eight models. For both models implemented using logistic regression and decision tree, 
misclassification remained stable between the training and test datasets, while a bump in misclassification rate was 
observed for bootstrap forest and boosted tree. The increase for bootstrap forest was the largest, increasing by 
approximately 10%; suggesting that this model may be slightly overfitted.  

OTHER ASSESSMENT METRICS 
Models would be assessed on two levels, first models developed using the original dataset, and at the overall level 
across all eight models. Aside from comparing the true positive and misclassification proportions, the accuracy, 
precision, sensitivity and specificity of the test dataset of each model are tabulated in Table 5. Among the models 
implemented on the original dataset, the model using the Bootstrap Forest approach resulted in better outcomes, with 
the highest true positive rate of 51%. While sensitivity rate for this model was at a modest 51%, it was also highest 
compared to all other models. However, as mentioned in earlier paragraphs, a sizable increase in misclassification rate 
was observed for this model between the training and test dataset, a potential sign of overfitting. Therefore, depending 
on the purpose of the model, there may be value in considering the logistic regression or boosted tree method, with 
slightly poorer results, but lower likelihood of overfitting.  

Across all 4 methods, the test dataset with the SMOTE treated sample recorded a significant increase in true positive 
cases detected, compared to when the methods were applied to the original test dataset. Notably, overall accuracy of 
the model did not improve despite higher true positive scores for models implemented on the SMOTE treated test 
samples. This lack of improvement may be due to the class imbalance, with the successful number of non-landslide 
cases predicted on the original dataset accounting for the high accuracy proportions.  



17 

Two important measurements for consideration are the Precision and Sensitivity levels of the models. Precision 
quantifies the number of positive landslide predictions that belong in the landslide class; a sharper tool compared to 
accuracy that is specific to the landslide class. Models implemented on the SMOTE treated sample performed better, 
when compared to the original sample, regardless of method. Between methods, Boosted Tree appeared to have 
recorded the highest improvement, increasing its precision rate by 19%. Sensitivity quantifies the proportion of observed 
landslide cases that were predicted as such. This is an important measure as a model with low sensitivity would mean 
that a sizable proportion of cases go undetected, and in the case of landslide detection, it may be disastrous. Like 
precision, models implemented on the SMOTE treated sample recorded higher sensitivity than those implemented on 
the original sample. Among the methods, Decision Tree recorded the sharpest improvement of 34%. 

Lastly, specificity quantifies the proportion of observed non-landslide cases that were accurately predicted as such. It 
was interesting to note that across all models, specificity went down for models that were implemented on the SMOTE 
treated sample. As such, it is important to seek a balance between the measures when assessing model performance. 
For example, the decision tree model on the SMOTE sample noted the highest sensitivity, but lowest specificity.   

CONCLUSION AND FUTURE RECOMMENDATIONS 
This study set out to understand the efficacy of different classifier methods on detecting landslide susceptibility and if 
addressing the issue of class imbalance using SMOTE would improve overall classification performance compared to 
an imbalanced dataset, and our findings showed recursive partitioning methods such as Bootstrap Forest and Boosted 
Tree tended to yield better outcomes, compared to logistic regression. These methods, however, were also more likely 
to show signs of overfitting and should be monitored closely if chosen for future studies. On addressing class imbalance, 
results improved across all 4 classifier methods, to varying extents. Decision Tree applied on the SMOTE sample led 
to a model with the highest sensitivity, however Boosted Tree on the SMOTE sample yielded the most balanced results 
across multiple measures. Therefore, there is value in exploring sampling techniques such as SMOTE when doing 
similar landslide susceptibility studies in the future. It would also be useful to test multiple classifier methods and 
evaluate them based on the decision threshold required on a case-by-case basis, in order to decide on the best 
approach.  

With these results in mind, there may be value in expanding the study on three fronts. First, use classifier methods 
such as Artificial Neural Networks and Frequency Ration Models that were not explored in this study. Second, to 
experiment with other sampling methods such as SMOTE with Tomek to see if results would improve beyond just using 
SMOTE. And lastly, to replicate the study across other landslide sites, to understand if improvements to the model is 
uniform across all sites, or due to unique features observed in this specific Hong Kong case.  
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