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ABSTRACT

One common encounter in landslide susceptibility prediction is the lack of landslide samples to train the models. The
main objective of this study is to investigate the impact of imbalanced data on landslide susceptibility prediction and
compare the performance of models using imbalanced (original) and balanced data. Terrain information were obtained
from samples of land with landslides and without landslides. Using exploratory data analysis, the characteristics of the
variables in landslide and non-landslide cells in relation to their surrounding cells were identified and new independent
variables were created to augment the existing dataset. Statistical learning method like logistic regression and recursive
partitioning approaches including Decision Tree, Bootstrap Forest and Boosted Tree were used for landslide
classification. Then, synthetic minority oversampling technique (SMOTE) was applied to expand the quantity of
landslide samples and the same models were ran again. Results indicated that across all models, the usage of balanced
data and increase in minority samples have led to improved outcomes, with true positive rates increasing from around
50% or less, to over 80% in all models. Recursive partitioning approaches like Bootstrap Forest and Boosted Tree
generally performed better compared to logistic regression, giving higher true positive rates and a balance of
performance among other evaluation metrics.

INTRODUCTION

According to the World Health Organisation (2018), landslides occur more frequently than any other geological event,
and can happen anywhere in the world. Between 1998 and 2017, landslides caused 18,000 fatalities, and affected an
estimated 4.8 million people worldwide. In Italy, Austria, Switzerland and France, the mean annual costs of landslides
were estimated between USA 1 to 5 billion for each country (Strumpf & Kerle, 2011). With growing occurrences,
landslide identification plays a significant role in landslide risk assessment and management (Wang et al., 2019).

The use of statistically based models and machine learning techniques to understand landslide susceptibility is not an
uncommon practice. A meta-analysis conducted by Korup and Stolle (2014) across 674 scientific papers published,
found that most machine learning techniques achieved overall success rates of 75 to 95 percent and added that logistic
regression was the most commonly adopted approach (33 percent). This was followed by Artificial Neural Networks
(31 percent) and Frequency Ration Models (18 percent).

Despite preference and high utility for certain approaches, there is no agreed upon best method for empirical
susceptibility modelling (Goetz et al., 2015). A point of interest that came up in recent literature, however, was the issue
of class imbalance in landslide susceptibility data. Studies have shown that a balanced dataset improves overall
classification performance compared to an imbalanced dataset in several classifier algorithms. While this does not
imply classifiers cannot learn from imbalanced data, the application of sampling methods does indeed aid in improved
classifier accuracy for most imbalanced datasets (Haibo & Garcia, 2009). Specific to landslide susceptibility, in a study
conducted by Stumpf and Kerle (2011), test runs using Random Forests with naturally imbalanced training sets resulted
in serious underestimation of the landslide class. Such biases were undesirable as an over or underestimation of
affected areas would lead to over or underestimation of the associated risks. However, treating imbalanced samples is
not commonly practiced in the field.

In our study, we will be applying synthetic minority oversampling technique (SMOTE) to expand the quantity of landslide
samples and doing comparisons of the results pre- and post-SMOTE. Proposed by Chawla in 2022, SMOTE is an
oversampling technique that performs k nearest neighbours on the minority class and interpolates between them to
generate new data observations. This method has its advantages over random undersampling, which may throw out
potentially useful data; and random oversampling, which may be susceptible to overfitting since it simply replicates
existing examples in the minority class (Singh & Sharma, 2019). SMOTE is also generalised to handle datasets with
both continuous and nominal features, which will be appropriate for the features available in our study. Several other
landslide susceptibility studies (Wang et al., 2018 and Gao et al., 2020) have also used SMOTE method to augment
the minority class samples and reported favourable prediction results.

DATA

This project will utilise the dataset obtained from the Landslide Prevention and Innovation Challenge on Zindi Africa
Platform that is provided by the Hong Kong University of Science and Technology (2022). The dataset contains
information on terrain information taken from plots of land samples. Each sample is composed of data from 25 cells,
covering an area of 625 m2. Each cell represents an area of 5 x 5 m2. For cases with a landslide, the middle cell, cell
13, is the location of the landslide. Cell orientation and independent variables available in the dataset are presented in
the figure and table below.



Figure 1. Dataset Cell ID allocation

1 4] 11 16 | 21
2 7 12 | 17 | 22
3 8 13 | 18 | 23
4 9 14 | 19 | 24
5 10 | 15 | 20 | 25

Table 1. Independent variables for landslide identification

Feature name Data type Description
CELLID_elevation Continuous Digital elevation of the terrain surface in meter
CELLID_slope Continuous Angle of the slope inclination in degree
CELLID_aspect Continuous Exposition of the slope in degree
CELLID_placurv Continuous SPIIE?;;orm curvature, curvature perpendicular to the direction of the maximum
Profile curvature, curvature parallel to the slope, indicating the direction of
CELLID_procurv Continuous ' P P 9

maximum slope

CELLID_lsfactor Continuous Length-slope factor that accounts for the effects of topography on erosion
Topographic wetness index, an index to quantify the topographic control on
hydrological process

Lithology of the surface material

1. Weathered Cretaceous granitic rocks

27 Weathered Jurassic granite rocks

3: Weathered Jurassic tuff and lava

4: Weathered Cretaceous tuff and lava

5

&

7

CELLID_twi Continuous

CELLID_geology Categorical

“ Quaternary deposits
CFill
“ Weathered Jurassic sandstone, siltstone and mudsione
Step duration orographic intensification factor: an index to quantify the
amplification of orography on rainfall
1: Landslide
0: Non-landslide

CELLID_sdoif Continuous

Label Categorical

DATA PREPARATION

Heatmaps of Predictors

Prior to data preparation, heatmaps of the continuous predictions for the landslide and non-landslide cases were
developed to better visualize and understand the average values of the factors across the 25 cells.

Comparing Figures 2 and 3, the heatmaps for selected factors differed for landslide vis-a-vis non-landslide cases. In
landslide cases for the elevation factor, the top two rows had higher values of up to 246m compared to the bottom two
rows, whereas for the non-landslide cases, the bottom two rows of cells had higher elevation of up to 218m. This pattern
was repeated for planform and profile curvature — the landslide cases showed a distinct pattern where the first two rows
of cells had the highest values vs the bottom two rows which had the lowest values. Contrarily, the non-landslide cases
had the highest values to the left of the plot of land, and the lowest values to the right. The range of values for these
three factors were also wider for landslide cases compared to non-landslide cases.

For TWI, the lowest value of 4 was at cell 13 for landslide cases, while the lowest TWI values for non-landslide cases
were more dispersed and higher in magnitude, at 50.10, and was located at cell 5. Comparing both figures for the slope
factor, cells 8, 9, 13, and 14 had the highest values of up to 36 for landslide cases, while it was cells 17 and 18 for the
non-landslide cases, with the highest values of only up to 26.9. Similarly for the length slope factor, the same cells had
the highest values for the landslide cases of up to 10, while the non-landslide cases had the highest value in cell 23,
and only up to 7.4.

For slope and length slope factor, the landslides cases displayed a pattern where higher values were concentrated in
the middle cell and its immediate neighbours, whereas the dispersion of values in non-landslide cases were more



random.

Figure 2. Heatmaps of continuous predictors (Landslide)
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Figure 3. Heatmaps of continuous predictors (Non-Landslide)
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Data Preparation

As cell 13 is the location of the landslide, data for cell 13 was retained for all factors. In line with the interpretation of
the heat maps, new features were also created to capture the differences and patterns between cell 13 and its
neighbours. The data preparation process is summarized in Figure 4 below.

Figure 4. Data Preparation Process

Data on
aspect,

elevation, slope,
placury, procury,

Isfactor, twi, geology and sdoif

Aspect, TWI,
SDOIF

Geology

Retained Cell 13. As some categories
had low values, it was recoded based
on the different types of surface
materials: Categories 1 & 2 were
recoded as 1, 3 & 4 were recoded as
2, and the rest as 3.

Retained Cell 13

Elevation, Placurv, Procurv Slope, LSfactor

The average of (i) first 2 rows of
cells, (i) the middle row, and {iii)
last 2 rows of cells was
calculated. Two new variables
were derived: (ii) - (i) and (ii) -
{iii). Cell 13 was also retained.

The mean of (i) first level neighbours
(Cells 7-9,12,14,17-19) and (ii) second
level neighbours (remaining cells) was
calculated. Two new variables were
derived: Cell 13 — (i) and Cell 13-(ii). Cell
13 was also retained.

N s T )

Final Data

Exploratory Modelling

Distribution analysis was
performed on all retained and
derived variables. The variables
were distributed uniformly.

Distribution analysis was performed concurrently
for the Label and other variables to check for
complete/quasi-complete separation. Checks on
the distribution of variables did not reveal any
predictor variables that were completely separated
by the outcome variable.




ANALYTICAL APPROACH

There is no consensus on an optimal machine learning (ML) algorithm as the performance and predictive ability of ML
models rely on many factors such as the fundamental quality of the algorithms and the quality of the landslide inventory.
As such, literature suggests choosing the best-performing ML model after building several (Liu et al., 2021, Merghadi
et al., 2020). Since landslide prediction is a classification problem with the binary outcome of presence/absence of a
landslide, and training data has been provided, we will build 4 models using supervised ML classification algorithms.

The 4 methods are summarised in the table below (Merghadi et al., 2020, Wang et al., 2020, Hurley, 2012).

Table 2. Summary of ML methods Utlised

Models Goal of ML Method Strengths Limitations
Assumptions to be met:
Logistic Predicts the probability of Has been shown to have - Little or no multicollinearity
Regression | the occurrence of an event high accuracy in predicting between factors
" | landslides. - Dependent variable has to
be in binary form
- Large sample size
Splits the data based on Performance ma It may return a biased solution
- independent factors in the . v if one class label dominates
Decision . d d sometimes be superior when he d hus it i
Tree input dataset a!n' compared to linear models the dataset, thus it is
generates decision nodes such as logistic reqression necessary to use a balanced
inferring a predictor value. 9 9 ’ dataset.
A sequence of weak Combines the performance
d . of a number of weak )
Boosted learners (such as decision classifiers to produce a It may overfit the data and thus
T tree) is fitted to weighted “ P o predictions on new data may
ree . oS powerful “committee”, so it is
versions of the training not be accurate.
data regar.d.ed as a strong
’ classifier.
It often produces the best
Utilises multiole decision The resulting model is results when there is tuning of
Bootstra tree type claspsification usually more powerful than hyper-parameters, such as the
Forest P mode)Ils to determine an the initial decision tree, and number of trees to be
ootimal model reduces overfitting and helps | combined, or the maximum
P ’ improve accuracy. number of features considered
at each split.

ANALYSIS PROCESS AND RESULTS

Sampling for data validation — Original and SMOTE dataset

After preparation of the predictors, the sample was split into 3 sub-groups for training (40%), validation (30%) and
testing (30%). To address the main objective of the study, a separate sample was also prepared using SMOTE
techniques to address the issues of class imbalance, using the same split in proportion. Consequently, 5432 additional
rows of observations with /abel of value 1, i.e., landslide observations were generated. The figures below show the

parameters used for the sampling for both Original and SMOTE dataset.




Figure 5. Sampling parameters for Original Sample (left) and SMOTE Sample (right)

Make Validation Column Make Validation Column
Stratified Validation Column Stratified Validation Column
Randomly partitions the rows into training, validation and test sets while attempting to evenly distribute Randemly partitions the rows into training, validation and test sets while attempting to evenly distribute
across levels of the stratification variable(s). Use this optien when you want 3 balanced representation across levels of the stratification variable(s). Use this option when you want a balanced representation
of a column's levels in each of the training, validaticn and test sets. of 3 column’s levels in each of the training, validation and test sets.
Stratification Columns: Label Stratification Columns: Label
Specify rates or relative rates Specify rates or relative rates
Adjusted Rates Rew Counts Adjusted Rates Row Counts
Training Set 0.40004 4246 Training Set 0.39598 6518
Validation Set 0.29998 3250 Validation Set 0.20001 4389
Test Set 0.20998 2250 Test Set 0.30001 4889
Excluded Rows 0 Excluded Rows 0
Total Rows 10864 Total Rows 162%
Options Options
New Column Name [Data Sampling New Column Name Data Sampling
Validation Column Type [, oy v Validation Column Type [Fieq ]
Random Seed 1234 Random Seed 1234

Logistic Regression Approach

While logistic regression is not limited by several key assumptions of linear regression and general linear models that
are based on ordinary least squares algorithms — linearity, normality, homoscedasticity, and measurement level, it still
shares some assumptions with linear regression. One main assumptions of logistic regression is for there to be little or
no multicollinearity among the independent variables (Schreiber-Gregory & Bader, 2018). Hence, before performing
logistic regression, we first checked for multicollinearity among the continuous independent variables.

Multivariate Analysis of variables

Among the 19 independent variables, two pairs were strongly correlated with correlation values above 0.8. Hence, we
remove one variable from each pair, specifically middle_second_layer_diff_slope and middle_second_layer_diff_Is and
retained 17 variables for logistic regression.

Figure 6. Pairwise Correlations sorted in descending order of Correlation (Top 5)

Pairwise Correlations

Variable Variable Correlation Count Lower 95% Upper 95% Signif Prob -8 -13-.4 -2 0 .2 4 6 8
middle_second_layer_diff_slope middle_first_layer_diff_slope 0.9058 10864 0.9023 0.9091 <.0001* g 8

middle_second_layer_diff_|s middle_first_layer_diff_|s 0.8691 10864 0.8645 0.8737 <ooo1*| ¢ ¢
13 _lsfactor 13_slope 0.7005 10664 0.7833 0.7074 <0001% | | § | | j
middle_secend_layer_diff_slope middle_second_layer_diff_Is 0.6574 10864 0.6773 0.6972 <0001 ¢ f 0
middle_second_layer_diff_slope 13_slope 0.6708 10864 0.6603 06810  <00017| { | | | [EInamd

Logistic Regression — Original sample

For logistic regression using the original data, the Whole Model Test shows p-value < 0.0001, lower than significance
level of 0.05. Hence, we can reject the null hypothesis and conclude that the logistic model is useful to explain the label
(landslide or no landslide).

Figure 7. Whole Model Test for Logistic Regression — Original Sample

Whole Model Test

Model -Loglikelihood DF ChiSquare | Prob>ChiSq
Difference 625.7424 18 1251.485 <,0001*
Full 1817.6167

Reduced 2443 3501

RSquare (U) 0.2561

AlCc 36734

BIC 37944

Cbservations (or Sum Wagts) 4346

For the Lack of Fit (Goodness of Fit) test, Prob>Chisq is 1 and we do not reject the null hypothesis at significance level
of 0.05. This supports the conclusion that the model is adequate and there is little to be gained by introducing additional
variables.



Lack Of Fit

Source DF -Loglikelihood
Lack Of Fit 4321 1817.6167
Saturated 4339 0.0000
Fitted 18 1817.6167

ChiSquare

3635233

Prob: ChiSq

1.0000

Figure 8. Lack of Fit Test for Logistic Regression — Original Sample

Both the Effect Likelihood Ratio Tests and Parameter Estimates show the same 12 independent variables as significant
given that Prob>ChiSq of these 12 variables are less than significance level of 0.05. Five variables, including the middle
cell for length-slope factor and the newly-created variables for planform curvature and profile curvature were found to
be not significant.

Among the significant variables, the middle cell (i.e., cell 13) for step duration orographic intensification factor (sdoif),
planform curvature (placurv) and profile curvature (procurv) were the strongest indicators. Specifically, if a specific plot
of land cell had higher values of sdoif or procurv; or lower value of placurv, it had a higher landslide susceptibility.

Figure 9. Parameter Estimates (left) and Effect Likelihood Ratio Tests (right) for Logistic Regression — Original

Sample

Effect Likelihood Ratio Tests

Parameter Estimates

L-R Term Estimate  Std Error _ChiSgquare Prob: ChiS

Source Nparm __ DF _ChiSquare Prob>Chisq |!3-d°if ;”B';‘ZESQ‘;‘; ;;giéi‘g pps
13.geology 2 22 249.657016 “ooor middlz_ctl;lcr;tom_diff_placurve 422162618 4.331776 0.95
L3 d=airm L e 13_geology 2[2] 0.98177385 0.0688279 20347
13 _sdoif 1 1 75.9969025 T Ale AL 0.27285354 0.0462203 3511
13 _twi 1 1 31.9702884 13_slope 0.10766614 0.0167480 132
middle_first_layer_diff_slope 1 1 435232045 13_aspect 0.00089602 0.0004385 418
13_slope 1 1 37.4255029 120 levaton -0.003142  0.0003175 97.90
middle_first_layer_diff_ls 1 1 365104448 13 _lsfactor -0.0615323  0.045236 1.85
middle_top_diff_elevation 1 1 35.1865417 middle_bottom_diff_elevation -0.1197211 0.0328009 13.32
13_placury 1 1 33.6771537 : middle first layer diff slope  -0.1276769 0.0196262 4232
middle_bottom_diff elevation 1 1 13.4173891 0 2 middle_top_diff_elevation -0.2000799  0.03406843 3450
13_aspect 1 1 4.1973646 0 5+ middlg_bottom_diﬁ_procurve -0.4862333  4.5184466 0.01
| omes oo AR oeme e
LBz . U RS 0.1820 e top. diff_placurve -3.4328945 4.3889165 0.61
me el R el e ! U TR 03101 @ iidle top_diff procurve  -4.5105066 4.4597580 102
middle_bottom_diff_placurve 1 1 0.94938538 0.3299 i -15.402907 1.7673598 7595
middle_top_diff_placurve 1 1 0.61242623 0.4339 |-|3_p|acumr 16.623313  2.8967521 3297
middle_bottom_diff_procurve 1 1 0.01158183 0.9142

Ferlog odds of 1/0

Looking at results on the test dataset, a low true positive rate of 44%, and a misclassification rate of approximately 20%
was observed.

Figure 10. Summary results for Logistic Regression — Original Sample

Fit Details

Measure Training Validation  Test Definition

Entropy RSquare 0.2561 0.2509 0.2580 1-Loglike(model)/Loglike(0)

Generalized RSquare 0.3706 0.3640 0.3731 (1-(L{0)/Limedel))*(2/n))/(1-L{O)"2/m))

Mean -Leg p 0.4182 0.4211 0.4176 3 -Leg(p[jl)/n

RASE 0.3673 0.3693 0.3685 v I(yljl-pll)¥n

Mean Abs Dev 0.2704 0.2724 0.2714 3 |y[jl-e[ll/n

Misclassification Rate 0.1993 0.2001 0.1979 3 (p[jlzpMax)/n

N 4346 3259 3259 n

Confusion Matrix

Training Validation Test
Predicted Predicted Predicted
Actual Count Actual Count Actual  Count
Label 1 0 Label 1 0 Label 1 0
1 468 618 1 367 447 1 360 456
0 248 3012 0 203 2240 0 189 2254
Predicted Predicted Predicted

Actual Rate Actual Rate Actual Rate
Label 1 0 Label 1 0 Label 1 0
1 0.431 0.569 1 0.451 0.549 1 0.441 0,559
0 0.076 0.924 0 0.084 0.916 ] 0.077 0923




Logistic Regression — SMOTE sample

Performing logistic regression on the SMOTE-treated data, the Whole Model Test shows p-value < 0.0001. Hence, we
can reject the null hypothesis at significance level of 0.05 and conclude that this logistic model is useful to explain the
label (landslide or no landslide).

Figure 11. Whole Model Test for Logistic Regression — SMOTE Sample
Whole Model Test

Model -Loglikelihood DF ChiSquare | Prob>ChiSq
Difference 1353.0122 18 2706.024 <.0001*
Full 3164.9199

Reduced 4517.9321

RSquare (U) 0.2995

AlCc 6367.96

BIC 6496.7

Observations [or Sum Wagts) 6518

Lack of Fit test similarly shows Prob>Chisq less than significance level of 0.05. Hence, we can conclude that the model
is adequate and there is little to be gained by introducing additional variables.

Figure 12. Lack of Fit Test for Logistic Regression — SMOTE Sample

Lack Of Fit

Source DF -Loglikelihood ChiSquare
Lack Of Fit 6459 31649199 6329.54
Saturated 6507 0.0000 | Prob=ChiSq
Fitted 18 3164.9199 0.9197

Compared with the original sample with 12 significant independent variables, logistic regression on the SMOTE sample
has 13 significant independent variables as shown by the Parameter Estimates and Effect Likelihood Ration Tests.
Four variables, including the middle cell for aspect and most of the newly-created variables for planform curvature and
profile curvature were found to be not significant.

The strongest indicators for this model were similarly the middle cell for sdoif, placurv and procurv. Higher values of
sdoif or procurv; or lower value of placurv, indicated a higher likelihood of the land cell having landslide.

Figure 13. Parameter Estimates (left) and Effect Likelihood Ratio Tests (right) for Logistic Regression - SMOTE
Sample

Effect Likelihood Ratio Tests Parameter Estimates
L-R Term Estimate Std Error ChiSquare Prob>ChiSq

Source Nparm DF__ChiSguare Prob=ChiSg 13 _sdoif 0.52483640 0.8961531 112.97 <.0001*
13_geology 2 2 2 308524177 <0001 13 procury 5.51180384 2.4042358 5.26
13_elevation 1 1 176.201798 <0007 151_9&0@9‘; 2[2] . 0.9045612 0.0498635 32902
middle._first_layer_diff_slope 1 1 132053701 middle_first_layer_diff_Is 0.30411769 0.0387412 61.62

- 13 _slope 0.14267494 0.0126363 127.48
133 L U T 13_aspect 0.00059032 0.0003251 330
13 _slope 1 1 116.520764 13_elevation -0.0032485 0.0002519  166.33
13 _twi 1 1 07.855444 13 _lsfactor -0.0755328  0.032306 5.14
rniddle_first_layer_diff_|s 1 1 63.3574095 middle_bottom _diff_elevation -0.1125077 0.0270103 17.35
13_placum 1 1 52.5826603 middle_first_layer_diff_slope -0.1820306 0.0160283 128.98
middle_top_diff_elevation 1 1 47.8787706 middle_top_diff_elevation -0.1931957 0.0281335 47.16
middle_bottom_diff_elevation 1 i 17.497825 middle_bottom_diff_procurve -0.3577074 3.5717322 0.01
middle_top_diff_placurve 1 1 777173594 0.0 13 _twi -0.5316051 00603205 7761
13_procur 1 1 5.270022930 0 middle_bottomn_diff_placurve -0.7293011 3.4953929 0.04
13 Isfactor 1 1 496500805 0.0259 1%_geolog)f 2.[1] -0.7773112  0.0627789 153.31

middle_top_diff_procurve -4.3727359 3.6022723 147

SR L I Tats middle_top_diff_placurve 97784371 3.515762 7.74
middle_top_diff_procurve 1 1 1.47358322 0.2245 Intercept _13.708862 1.2224 127.43 "
middle_bottom_diff_placurve 1 1 0.04352058 0.8347 I 12_placuns -16.277202 2.2647878 51.65 01* I
middle_bottom_diff_procurve 1 1 0.01002845 0.9202 Tor log oods of 170

True positive rate for the test dataset also improved significantly from 44% to 80%. The misclassification rate, however,
increased slightly to 22%.



Figure 14. Summary results for Logistic Regression — SMOTE Sample

Fit Details

Measure Training Validation  Test Definition

Entropy RSquare 0.2995 0.2865 0.2966 1-Loglike{medel)/Loglike{0)
Generalized RSquare 0.4530 0.4370 0.4495 (1-(L{0)/L{model))*(2/n)}/(1-LO}*2/n))
Mean -Log p 0.4856 0.4946 0.4876 ¥ -Logip[jl/n

RASE 0.3968 0.4005 0.3973 ¥ 3(y[jl-p[1}¥/n

Mean Abs Dev 0.3175 0.3220 0.3205 3 |y[jl-pljlln

Misclassification Rate  0.2252 0.2252 0.2209 ¥ (p[jlzpMax)/n

N 6518 4889 4889 n

Confusion Matrix

Training Validation Test

Predicted Predicted Predicted
Actual Count Actual Count Actual Count
Label 1 0 Label 1 0 Label 1 0
1 2606 651 1 1990 457 1 1938 486
0 817 2444 ] 644 1798 ] 594 1851

Predicted Predicted Predicted

Actual Rate Actual Rate Actual Rate
Label 1 0 Label 1 0 Label 1 0
1 0.800 0.200 1 0.813 0.187 1 0.801 0.199
0 0.251 0.749 ] 0.264 0.736 ] 0.243 0.757

Recursive Partitioning Approaches

As prediction techniques under this approach are nonparametric, these methods do not rely on any assumption about
the type of dependence of the dependent variable on the predictors (Landau & Barthel, 2010). Therefore, all 19
independent variables were included in the analysis for all six models. To ensure reproducibility of the data, a seed of
‘1234’ was set for both the Bootstrap Forest and Boosted Tree analyses.

Decision Tree — Original sample

For Decision Tree using the original data, the resultant model with 14 splits yielded 15 terminal leaf nodes with a
response count ranging from 10 to 274 for landslide observed rows and 25 to 1131 for non-landslide rows. Eight
variables were identified to have contributed to the model, with the middle cells (i.e., cell 13) for slope, geology and
elevation being identified as the top 3 indicators for landslide susceptibility. Looking at results on the test dataset, a low
true positive rate of 36%, and a misclassification rate of approximately 20% was observed.

Figure 15. Column Contributions for Decision Tree — Original Sample

Column Contributions

Number

Term of Splits G2 Portion
13_slope 4 669.983709 : : | 05101
13_geology 2 2 257.467785 : : : 0.1960
13_elevation 2 123.119388 | |: : 0.0937
middle_second_layer_diff_Is 1 94.3830903| | g 0.0719
middle_top_diff_elevation 2 56.7809542 | 0.0432
13_twi 1 45.1987828 ] 0.0344
middle_bottom_diff_elevation 1 35.9432772 ] 0.0274
13_sdoif 1 30.493046 ] 0.0232

_Isfactor 0 0 0.0000
middle_first_layer_diff_ls 0 0 0.0000
13_procurv 0 0 0.0000
middle_top_diff_procurve 0 0 0.0000
middle_bottom_diff_procurve 0 0 0.0000
13_placurv 0 0 0.0000
middle_top_diff_placurve 0 0 0.0000
middle_bottom_diff_placurve 0 0 0.0000
13_aspect 0 0 0.0000
middle_first_layer_diff_slope 0 0 0.0000
middle_second_layer_diff_slope 0 0 0.0000




Figure 16. Summary results for Decision Tree — Original Sample

Fit Details

Measure Training Validation  Test Definition

Entropy RSquare 0.2688 0.2535 0.2475 1-Loglike(model)/Loglike(0)
Generalized RSquare  0.3863  0.3673 0.3599 (1-(L(0)/L{model) 2/m))/(1-LO)A(2/n)
Mean -Log p 0.4111 0.4196 0.4235 ¥ -Log(p(i)/n

RASE 0.3634 0.3681 0.3709 | J(y[il-pll¥/n

Mean Abs Dev 0.2643 0.2697 0.2663 ¥ |y[]-p0ll/in

Misclassification Rate  0.1967 0.1976 0.1991 ¥ (pfj=pMax)/n

N 4346 3259 3259 n

Confusion Matrix

Training Validation Test

Predicted Predicted Predicted
Actual Count Actual Count Actual Count
Label 0 1 Label 1] 1 Label (1) 1
0 3113 147 0 2317 128 0 2319 124
1 708 378 1 516 298 1 525 291

Predicted Predicted Predicted

Actual Rate Actual Rate Actual Rate
Label 0 1| | Label o 1| | Label o 1
0 0.955 0.045 | |0 0.948 0.052 | |0 0.949 0.051
1 0.652 0.348 | |1 0.634 0.366 | |1 0.643 0.357

Decision Tree — SMOTE Sample

Using the SMOTE-treated data, the resultant decision tree model with 13 splits yielded 14 terminal leaf nodes with a
response count ranging from 3 to 1444 for landslide observed rows and 45 to 878 for non-landslide rows. Six variables
were identified to have contributed to the model, with the middle cells (i.e., cell 13) for slope, geology and sdoif being
identified as the top 3 indicators for landslide susceptibility. Looking at results on the test dataset, the true positive rate
noted significant improvement from 36% to close to 90%. The misclassification rate, however, remained stable at 22%.

Figure 17. Column Contributions for Decision Tree — SMOTE Sample

Column Contributions

Number
Term of Splits GA2 Portion
13_slope 3 1806.65772 : : : | 0.6345
13_geology 2 3 379.110951 :l | i i 0.1331
13_sdoif 2 2324311651 1 . 0.0816
13_elevation 3 231.457778 | i i i i 0.0813
middle_second_layer_diff_Is 1 150.265143 1 | i i i 0.0528
middle_bottom_diff_elevation 1_47.5670765 | d B H d 0.0167
13_lsfactor 0 0 i i i i 0.0000
middle_first_layer_diff_Is 0 0 i f : i 0.0000
13_procurv 0 0 0.0000
middle_top_diff_procurve 0 0 0.0000
middle_bottom_diff_procurve 0 0 0.0000
13_placurv 0 0 0.0000
middle_top_diff_placurve 0 0 0.0000
middle_bottom_diff_placurve 0 0 0.0000
13_twi 0 0 0.0000
13_aspect 0 0 0.0000
middle_first_layer_diff_slope 0 0 0.0000
middle_second_layer_diff_slope 0 0 0.0000
middle_top_diff_elevation 0 0 0.0000

Figure 18. Summary results for Decision Tree — SMOTE Sample

Fit Details

Measure Training Validati Test Definiti

Entropy RSquare 0.3151 0.3038 0.3016 1-Loglike(model)/Loglike(0)
Generalized RSquare  0.4719 0.4583 0.4557 (1-(L(0)/L(model)A(2/n)/(1-L(0)A(2/n)
Mean -Log p 0.4747 0.4826 0.4841 } -Log(p[i))/n

RASE 0.3923 0.3961 0.3966 4 X (v[il-pl)*/n

Mean Abs Dev 0.3082 0.3135 0.3134 3 |y[i]-pfll/n

Misclassification Rate  0.2195 0.2277 0.2232 } (p[jlxpMax)/n

N 6518 4889 4889 n

Confusion Matrix

Training Validation Test
Predicted Predicted Predicted
Actual  Count Actual Count Actual Count
Label o 1 Label 0 1 Label o 1
0 2149 1112 0 1553 889 0 1605 840
1 319 2938 1 224 2223 1 251 2193
Predicted Predicted Predicted
Actual Rate Actual Rate Actual Rate
Label 0 1| | Label 0 1| |Label 0 1
0 0.659 0.341 0 0.636 0.364 | |0 0.656 0.344
1 0.098 0.902 1 0.092 0.908 1 0.103 0.897
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Bootstrap Forest — Original Sample

Bootstrap Forest approach was also conducted on the same 19 variables. Figure 19 shows the parameters used for
the analysis.

Figure 19. Bootstrap Forest analysis parameters

B¥ Bootstrap Forest
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The resultant model had 62 trees, 19 terms, and 14 terms sampled per split. The true positive rate of the bootstrap
forest model test set was 51%, an improvement over 36%, which was the test accuracy of the decision tree model. The
3 most important predictors were the middle cell (i.e., cell 13) for slope, sdoif and elevation.

Figure 20. Summary results for Bootstrap Forest — Original Sample

Overall Statistics

Measure Training Validation  Test Definition

Entropy RSquare 0.5819 0.3288 0.3431 1-Loglike(model)/Loglike(0)
Generalized RSquare  0.7113 0.4577 0.4743 (1-(L(0)/L(model)*(2/n))/(1-L(0)2/n))
Mean -Log p 0.2350 0.3773 0.3697 } -Log(p[j)/n

RASE 0.2552 0.3455 0.3451 3 (y[il-pli)*/n

Mean Abs Dev 0.1851 0.2521 0.2493 3 |y[il-p[]l/n

Misclassification Rate  0.0716 0.1675 0.1752 ¥ (p[]l#*pMax)/n

N 4346 3259 3259 n

Confusion Matrix

Training Validation Test

Predicted Predicted Predicted
Actual Count Actual Count Actual Count
Label 0 1 Label 0 1 Label 0 1
0 3215 45 0 2286 159 0 2269 174
1 266 820 1 387 427 1 397 419

Predicted Predicted Predicted

Actual Rate Actual Rate Actual Rate
Label 0 1 Label 0 1 Label 0 1
0 0.986 0.014 | |0 0.935 0.065 | |0 0.929 0.071
1 0.245 0.755 | |1 0.475 0.525 | |1 0.487 0.513

Figure 21. Column Contributions for Bootstrap Forest — Original Sample

Column Contributions

Number
Term of Splits Gr2 Portion
13_slope 913 415.620961 ! 0.2051
13_sdoif 862 168.05266 | 0.0829
13_elevation 882 163.641637 : ‘ 0.0808
13_geology 2 478 153.262822 I : 0.0756
13_Isfactor 595 120.645178 ] : 0.0595
13_twi 691 110.299345 l ; 0.0544
middle_second_layer_diff_ls 611 100.834486 : i 0.0498
middle_bottom_diff_elevation 666 97.0388873 ]l : 0.0479
middle_second_layer_diff_slope 467 83.7009583| | : 0.0413
middle_top_diff_elevation 600 76.5916489 ‘ 0.0378
13_placurv 591 73.3142415 | ; : 0.0362
middle_top_diff_placurve 537 66.2129702 | ; : 0.0327
13_aspect 673 61912127 | 1 : 0.0306
13_procurv 541 57.6606254 | ‘ : 0.0285
middle_top_diff_procurve 540 57.3152784 | 1 i 0.0283
middle_first_layer_diff_Is 527 56.3395064 | | 3 : 0.0278
middle_first_layer_diff_slope 466 56.0661788| | ; ; 0.0277
middle_bottom_diff_placurve 481 54.8622217 | ; : 0.0271
middle_bottom_diff_procurve 499 52.9559326 | ] : i 0.0261
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Bootstrap Forest — SMOTE Sample

Using the SMOTE treated data, Bootstrap Forest approach was also conducted on the same 19 variables using the
same analysis parameters. The resultant model had 100 trees, 19 terms, and 14 terms sampled per split. The true
positive rate of the bootstrap forest model was 86%, a significant improvement over 51%, which was the test accuracy
of the same model using the original data sample. The 3 most important predictors were the middle cell (i.e., cell 13)

for slope, elevation and sdoif.

Figure 22. Summary results for Bootstrap Forest - SMOTE Sample

Overall Statistics

Measure Training Validation  Test Definition
Entropy RSquare 0.6044 0.4391 0.4366 1-Loglike(model)/Loglike(0)
Generalized RSquare  0.7565 0.6080 0.6054 (1-(L(0)/L(model) (2/n))/(1-L(0)A(2/n))
Mean -Log p 0.2742 0.3888 0.3905 3 -Log(p[il)/n
RASE 0.2786 0.3509 0.3511 | X(y[il-pli)*/n
Mean Abs Dev 0.2141 0.2704 0.2722 } |y[i]-plill/n
Misclassification Rate  0.0875 0.1702 0.1751 ¥ (plil*pMax)/n
N 6518 4889 4889 n
Confusion Matrix
Training Validation Test
Predicted Predicted Predicted
Actual Count Actual Count Actual Count
Label 0 1 Label 0 1 Label 0 1
0 2906 355 0 1920 522 0 1931 514
1 215 3042 1 310 2137 1 342 2102
Predicted Predicted Predicted
Actual Rate Actual Rate Actual Rate
Label 0 1 Label 0 1 Label 0 1
0 0.891 0.109 | |0 0.786 0.214 | (0 0.790 0.210
1 0.066 0.934 | |1 0.127 0.873 1 0.140 0.860

Figure 23. Column Contributions for Bootstrap Forest - SMOTE Sample

Column Contributions

Number
Term of Splits Gn2 Portion
13_slope 1827 1060.3575 0.2943
13_elevation 1923 317.284026 ] 0.0881
13_sdoif 1720 309.710734 | 0.0860
13_geology 2 861 271.060829 — 0.0752
13_lsfactor 1034 218.501858 : 0.0606
middle_second_layer_diff_ls 1269 195.290267 [ | 0.0542
13_twi 1190 173.905903 | | 0.0483
middle_bottom_diff_elevation 1094 115.336122[ | 0.0320
middle_top_diff_elevation 1046 108.970235 | 0.0302
middle_first_layer_diff_slope 1024 99.2468353 | 0.0275
middle_second_layer_diff_slope 797 96.0055064 | 0.0266
13_aspect 1253 90.6720796 | | 0.0252
13_placurv 1027 89.6208799j 0.0249
middle_top_diff_placurve 967 86.4599752 [ ] 0.0240
middle_first_layer_diff_Is 905 78.9931736 | 0.0219
middle_bottom_diff_placurve 921 785827817/ 0.0218
middle_top_diff_procurve 944 78.3584626 | 0.0217
13_procurv 950 72.5826354 || 0.0201
middle_bottom_diff_procurve 813 62.2688904 | 0.0173
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Boosted Tree — Original Sample

Lastly, the same 19 variables were also used to implement a boosted tree analysis. Figure 24 shows the parameters
used for the analysis.

Figure 24. Boosted tree analysis parameters
® Boosted Tree
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The resultant model had 44 layers and 16 splits per tree. The true positive rate of the boosted tree model was 45%,
and a misclassification rate of 19%. All 19 variables contributed to the model, with the middle cell (i.e., cell 13) for
geology, slope and elevation identified as the top 3 strongest indicators.

Figure 25. Summary results for Boosted Tree — Original Sample

Overall Statistics

Measure Training Validation Test Definition

Entropy RSquare 0.4397 0.2658 0.2794 1-Loglike(model)/Loglike(0)

Generalized RSquare  0.5777 0.3826 0.3994 (1-(L(0)/L(model)*2/n))/(1-L(0)"(2/n))

Mean -Log p 0.3150 0.4127 0.4055  -Log(plil/n

RASE 0.3114 0.3599 0.3592 3 (y[j]-p(iD¥/n

Mean Abs Dev 02236  0.2587 0.2562 ¥ y[i-plill/n

Misclassification Rate  0.1247 0.1844 0.1942 3 (p[jlzpMax)/n

N 4346 3259 3259 n

Confusion Matrix
Training Validation Test
Predicted Predicted Predicted
Actual Count Actual Count Actual Count
Label o 1 Label 0 1 Label 0 1
0 3152 108 0 2258 187 0 2259 184
1 434 652 1 414 400 1 449 367
Predicted Predicted Predicted

Actual Rate Actual Rate Actual Rate
Label 0 1 Label 0 1 Label 0 1
0 0.967 0.033 0 0.924 0.076 0 0.925 0.075
1 0.400 0.600 1 0.509 0.491 1 0.550 0.450

Figure 26. Column Contributions for Boosted Tree — Original Sample

Column Contributions

Number

Term of Splits Gn2 Portion
13_geology 2 79 200820.945 : | 0.5771
13_slope 200 56132.6103 | ‘ 0.1613
13_elevation 83 26091.8257 | ° 0.0750

_aspec B7 13155.0841 1 0.0378
middle_top_diff_elevation 28 10468.4421 0.0301
middle_bottom_diff_elevation 30 10082.3177 /] 0.0290
13_sdoif 25 7707.38145[] 0.0221
13_twi 28 5386.43168 | 0.0155
middle_second_layer_diff_Is 15 3849.92531 | 0.0111
middle_top_diff_placurve 27 2673.12798 0.0077
13_lIsfactor 11 2307.50659 | 0.0066
middle_second_layer_diff_slope 12 1884.82537 | 0.0054
13_placurv 18 1834.67672| 0.0053
middle_top_diff_procurve 13 1373.31219] 0.0039
13_procurv 17 1134.29995 0.0033
middle_bottom_diff_procurve 16 1018.68904 0.0029
middle_bottom_diff_placurve 15 848.086628 0.0024
middle_first_layer_diff_slope 12 626.466082 0.0018
middle_first_layer_diff_Is 8 604.956139 0.0017
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Boosted Tree — SMOTE Sample

The Boosted Tree approach was also implemented on the SMOTE treated data using the same variables and analysis
parameters. The resultant model had 78 layers and 17 splits per tree. The true positive rate of the boosted tree model
was 86%, and a misclassification rate of 18%. All 19 variables contributed to the model, however, only the top 2
contributed to more than 10% of the model. The middle cells (i.e., cell 13) for geology, slope and elevation were
identified as the top 3 indicators.

Figure 27. Summary results for Boosted Tree — SMOTE Sample
Overall Statistics

Measure Training Validation Test Definition

Entropy RSquare 0.5289 0.3878 0.3989 1-Loglike(model)/Loglike(0)
Generalized RSquare  0.6929 0.5545 0.5663 (1-(L(0)/L(model)2/n))/(1-L(O)*(2/n))
Mean -Log p 0.3265 0.4243 0.4167 ¥ -Log(p[il)}/n

RASE 0.3153 0.3685 0.3635  X(y[il-pli)%n

Mean Abs Dev 0.2411 0.2835 0.2801 Y |y[il-plill/n

Misclassification Rate  0.1329 0.1933 0.1820 J (p[jlepMax)/n

N 6518 4889 4889 n

Confusion Matrix

Training Validation Test

Predicted Predicted Predicted
Actual Count Actual Count Actual Count
Label 1] 1 Label (1} 1 Label 0 1
0 2615 646 0 1827 615 0 1887 558
1 220 3037 1 330 2117 1 332 2112

Predicted Predicted Predicted

Actual Rate Actual Rate Actual Rate
Label [V} 1 Label 0 1 Label 1] 1
0 0.802 0.198 0 0.748 0.252 0 0.772 0.228
1 0.068 0932 | |1 0.135 0.865 | |1 0.136 0.864

Figure 28. Column Contributions for Boosted Tree — SMOTE Sample

Column Contributions

Number
m of Splits GA2 Porti
13_geology 2 148 779768.133 0.7191
13_slope 451 153399.491 0.1415
13_elevation 72 49979.5921 0.0461
13_aspect 255 23992.5975 0.0221
13_sdoif 31 20475.1356 || 0.0189
13_twi 31 14161.1391 0.0131
middle_top_diff_elevation 38 11196.8462 0.0103
middle_second_layer_diff_Is 23 9657.69282 0.0089
middle_bottom_diff_elevation 42 7032.84354 0.0065
13_placurv 20 2616.16897 0.0024
middle_bottom_diff_placurve 29 2495.82218 0.0023
middle_first_layer_diff_slope 25 1976.80618 0.0018
middle_top_diff_placurve 32 1967.47657 0.0018
middle_second_layer_diff_slope 20 1267.61214 0.0012
middle_first_layer_diff_Is 17 1237.39159 0.0011
13_lsfactor 24 901.965302 0.0008
13_procurv 22 846.021922 0.0008
middle_bottom_diff_procurve 28 784.14739 0.0007
middle_top_diff_procurve 18 610.066177 0.0006

MODEL COMPARISON & EVALUATION
FACTORS OF IMPORTANCE

Each model generated a unique set of variables and varies in contribution proportion to the model. It was observed that
the trend for Logistic Regression was distinctive from the recursive partitioning models.

For Logistic Regression, the planform curvature, profile curvature and step duration orographic intensification factor
were the variables with highest magnitude of estimates for log odds. These same variables however, featured much
lower importance in the recursive partitioning models. Instead, across Decision Tree, Bootstrap Forest and Boosted
Tree, slope, elevation and geology were noted as important variables. Notably, new variables that were created to
calculate the differences in parameters between the landslide cell (i.e., cell 13) and its neighbouring cells did not perform
as well as untreated variables in all models.
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Table 3. Summary of variable importance on test datasets

a

Logistic Regression Decision Tree Bootstrap Forest Boosted Tree

Original SMOTE Criginal SMOTE Criginal SMOTE Criginal SMOTE
13_elevation -0.0031 -0.0032 0.0937 0.0813 0.0808 0.0881 0.075 0.0461
middle_top_diff_elevation -0.2001 -0.1932 0.0432 0.0378 0.0302 0.0301 0.0103
middle_bottom_diff_elevation -0.1197 -0.1125 0.0479 0.032 0.029 0.0065
13_slope 01077 0.1427 0.1613 0.1415
middle_first_layer_diff_slope -0.1277 -0.1820 0.0275 0.0018
middle_second_later_diff_slope 0.0413 0.0266 0.0054 0.0012
13_|sfactor -0.0755 0.0595 0.0608 0.0066
middle_first_layer_difi_Is 0.2739 0.3041 | 00z@  0.0219 J
middle_second_layer_diff_ls 0.0719 0.0528 0.0498 0.0542 0.0111 0.0089
13_procurve 58958 55118

middle_top_diff_procurve 0.0217 0.0039

middle_bottom_diff_procurve

13_placurve 166333 162773 00362 00249 00053 00024

middle_top_diff_placurve 9778 0.0327 0.024 0.0077 0.0018

middle_bottom_diff_placurve | 00271 00218

07672141 -077TT3M]

13_geology_2 0.196 01331 00759  0.0752
0.0812[2]  0.9046[2]

13_sdoif [ 104501 95248 00232 | 00816 00829 0.086 0.0221 0.0189

13_aspect 0.0009 00306 00252 00378 00221

13_twi -0.4973 -0.5316 0.0344 0.0544 0.0433 0.0155 0.0131

-

Note: The heatmap is visualised per data column. Measure used for Logistic Regression are the Parameter Estimates
for Log Odds of 1/0. Measure used for Decision Tree, Bootstrap Forest and Boosted Tree are the portion of column
contributions.

OVERALL MODEL PERFORMANCE

Comparing the receiver operating characteristic curve (ROC) of the models, the differences among the models were
not visibly significant. All models were noted to have good predictive power, with the curve bowing above the diagonal.
The areas under the curve, an indicator of how good the classifier performs, were also similar across the models. There
were also no major fluctuations in the curve, indicating that the models are stable.

Figure 29. ROC Comparison for all models on Original Sample (top row) and SMOTE Sample (bottom row)
(from left to right: Logistic Regression, Decision Tree, Bootstrap Forest, Boosted Tree)
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For more detailed comparison among the models, we investigate further into the key performance indicators. The
table below summarises the key indicators between the training and test datasets.

Table 4. Summary of Model Performance on Training Datasets

Logistic

A Decision Tree Bootstrap Forest Boosted Tree
Regression

Original SMOTE Original  SMOTE  Original SMOTE original SMOTE

TP 0.431 0.8 0.348 0.659 0.755 0.934 0.6 0.932

N 0.924 0.749 0.935 0.09& 0.986 0.891 0.967 0.802
Accuracy 80% 7% 80% 78% 93% 91% 88% 87%
Misclassification 20% 23% 20% 22% 7% 9% 12% 13%
Precision 43% 80% 2% 73% 95% 90% 86% 82%
Sensitivity 65% 6% 35% 90% 76% 93% 60% 93%
Specificity 53% 9% 95% 665% 99% 90% 97 % 80%

Table 5. Summary of Model Performance on Test Datasets

Logistic

A Decision Tree Bootstrap Forest Boosted Tree
Regression

Original SMOTE Original  SMOTE  Original SMOTE  Original SMOTE

TP 0.441 0.801 0.357 0.897 0.513 0.860 0.450 0.864
N 0.823 0.7587 0.949 0.656 0.929 0.790 0.925 0.772
Accuracy 80% T8% 80% 78% 82% 82% 81% B82%
Misclassification 20% 22% 20% 22% 18% 18% 19% 18%
Precision 656% TT% 70% 72% 1% 80% B7% B86%
Sensitivity 44% 80% 36% 90% 91% 86% 45% 79%
Specificity 92% 76% 95% 66% 93% 79% 92% B85%
OVERFITTING ASSESSMENT

The misclassification rate between training and test datasets was used as an indicator to assess if there are signs of
overfitting across the eight models. For both models implemented using logistic regression and decision tree,
misclassification remained stable between the training and test datasets, while a bump in misclassification rate was
observed for bootstrap forest and boosted tree. The increase for bootstrap forest was the largest, increasing by
approximately 10%; suggesting that this model may be slightly overfitted.

OTHER ASSESSMENT METRICS

Models would be assessed on two levels, first models developed using the original dataset, and at the overall level
across all eight models. Aside from comparing the true positive and misclassification proportions, the accuracy,
precision, sensitivity and specificity of the test dataset of each model are tabulated in Table 5. Among the models
implemented on the original dataset, the model using the Bootstrap Forest approach resulted in better outcomes, with
the highest true positive rate of 51%. While sensitivity rate for this model was at a modest 51%, it was also highest
compared to all other models. However, as mentioned in earlier paragraphs, a sizable increase in misclassification rate
was observed for this model between the training and test dataset, a potential sign of overfitting. Therefore, depending
on the purpose of the model, there may be value in considering the logistic regression or boosted tree method, with
slightly poorer results, but lower likelihood of overfitting.

Across all 4 methods, the test dataset with the SMOTE treated sample recorded a significant increase in true positive
cases detected, compared to when the methods were applied to the original test dataset. Notably, overall accuracy of
the model did not improve despite higher true positive scores for models implemented on the SMOTE treated test
samples. This lack of improvement may be due to the class imbalance, with the successful number of non-landslide
cases predicted on the original dataset accounting for the high accuracy proportions.
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Two important measurements for consideration are the Precision and Sensitivity levels of the models. Precision
quantifies the number of positive landslide predictions that belong in the landslide class; a sharper tool compared to
accuracy that is specific to the landslide class. Models implemented on the SMOTE treated sample performed better,
when compared to the original sample, regardless of method. Between methods, Boosted Tree appeared to have
recorded the highest improvement, increasing its precision rate by 19%. Sensitivity quantifies the proportion of observed
landslide cases that were predicted as such. This is an important measure as a model with low sensitivity would mean
that a sizable proportion of cases go undetected, and in the case of landslide detection, it may be disastrous. Like
precision, models implemented on the SMOTE treated sample recorded higher sensitivity than those implemented on
the original sample. Among the methods, Decision Tree recorded the sharpest improvement of 34%.

Lastly, specificity quantifies the proportion of observed non-landslide cases that were accurately predicted as such. It
was interesting to note that across all models, specificity went down for models that were implemented on the SMOTE
treated sample. As such, it is important to seek a balance between the measures when assessing model performance.
For example, the decision tree model on the SMOTE sample noted the highest sensitivity, but lowest specificity.

CONCLUSION AND FUTURE RECOMMENDATIONS

This study set out to understand the efficacy of different classifier methods on detecting landslide susceptibility and if
addressing the issue of class imbalance using SMOTE would improve overall classification performance compared to
an imbalanced dataset, and our findings showed recursive partitioning methods such as Bootstrap Forest and Boosted
Tree tended to yield better outcomes, compared to logistic regression. These methods, however, were also more likely
to show signs of overfitting and should be monitored closely if chosen for future studies. On addressing class imbalance,
results improved across all 4 classifier methods, to varying extents. Decision Tree applied on the SMOTE sample led
to a model with the highest sensitivity, however Boosted Tree on the SMOTE sample yielded the most balanced results
across multiple measures. Therefore, there is value in exploring sampling techniques such as SMOTE when doing
similar landslide susceptibility studies in the future. It would also be useful to test multiple classifier methods and
evaluate them based on the decision threshold required on a case-by-case basis, in order to decide on the best
approach.

With these results in mind, there may be value in expanding the study on three fronts. First, use classifier methods
such as Atrtificial Neural Networks and Frequency Ration Models that were not explored in this study. Second, to
experiment with other sampling methods such as SMOTE with Tomek to see if results would improve beyond just using
SMOTE. And lastly, to replicate the study across other landslide sites, to understand if improvements to the model is
uniform across all sites, or due to unique features observed in this specific Hong Kong case.
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